Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 14(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37950892

RESUMO

Myotonic dystrophy type 2 (DM2) is a genetic disease caused by expanded CCTG DNA repeats in the first intron of CNBP. The number of CCTG repeats in DM2 patients ranges from 75 to 11,000, yet little is known about the molecular mechanisms responsible for repeat expansions or contractions. We developed an experimental system in Saccharomyces cerevisiae that enables the selection of large-scale contractions of (CCTG)100 within the intron of a reporter gene and subsequent genetic analysis. Contractions exceeded 80 repeat units, causing the final repetitive tract to be well below the threshold for disease. We found that Rad51 and Rad52 are involved in these massive contractions, indicating a mechanism that uses homologous recombination. Srs2 helicase was shown previously to stabilize CTG, CAG, and CGG repeats. Loss of Srs2 did not significantly affect CCTG contraction rates in unperturbed conditions. In contrast, loss of the RecQ helicase Sgs1 resulted in a 6-fold decrease in contraction rate with specific evidence that helicase activity is required for large-scale contractions. Using a genetic assay to evaluate chromosome arm loss, we determined that CCTG and reverse complementary CAGG repeats elevate the rate of chromosomal fragility compared to a short-track control. Overall, our results demonstrate that the genetic control of CCTG repeat contractions is notably distinct among disease-causing microsatellite repeat sequences.


Assuntos
Distrofia Miotônica , Humanos , Distrofia Miotônica/genética , Reparo do DNA/genética , Repetições de Microssatélites/genética , Saccharomyces cerevisiae/genética , RecQ Helicases/genética
2.
bioRxiv ; 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37461657

RESUMO

Myotonic Dystrophy Type 2 (DM2) is a genetic disease caused by expanded CCTG DNA repeats in the first intron of CNBP. The number of CCTG repeats in DM2 patients ranges from 75-11,000, yet little is known about the molecular mechanisms responsible for repeat expansions or contractions. We developed an experimental system in Saccharomyces cerevisiae that enables selection of large-scale contractions of (CCTG)100 within the intron of a reporter gene and subsequent genetic analysis. Contractions exceeded 80 repeat units, causing the final repetitive tract to be well below the threshold for disease. We found that Rad51 and Rad52 are required for these massive contractions, indicating a mechanism that involves homologous recombination. Srs2 helicase was shown previously to stabilize CTG, CAG, and CGG repeats. Loss of Srs2 did not significantly affect CCTG contraction rates in unperturbed conditions. In contrast, loss of the RecQ helicase Sgs1 resulted in a 6-fold decrease in contraction rate with specific evidence that helicase activity is required for large-scale contractions. Using a genetic assay to evaluate chromosome arm loss, we determined that CCTG and reverse complementary CAGG repeats elevate the rate of chromosomal fragility compared to a low-repeat control. Overall, our results demonstrate that the genetic control of CCTG repeat contractions is notably distinct among disease-causing microsatellite repeat sequences.

3.
Genet Med ; 24(3): 736-743, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34906458

RESUMO

PURPOSE: The American College of Medical Genetics and Genomics (ACMG) recommends the return of pathogenic and likely pathogenic (P/LP) secondary findings from exome and genome sequencing. The latest version (ACMG secondary finding [SF] v3.0) includes 14 additional genes. We interrogated the ClinSeq cohort for variants in these genes to determine the additional yield in unselected individuals. METHODS: Exome data from 1473 individuals (60% White, 34% African American or Black, 6% other) were analyzed. We restricted our analyses to coding variants; +1,+2,-1, and -2 splice site variants; and the pathogenic GAA variant, NM_000152.5:c.-32-13T>G. Variants were assessed with slightly modified ACMG/Association of Molecular Pathology guidelines. RESULTS: A total of 25 P/LP variants were identified. In total, 7 individuals had P/LP variants in genes recommended for return of heterozygous variants, namely HNF1A (1), PALB2 (3), TMEM127 (1), and TTN (2). In total, 4 individuals had a homozygous variant in a gene recommended for biallelic variant return, namely HFE, NM_000410.3(HFE):c.845G>A p.Cys282Tyr. A total of 17 P/LP variants were identified in the heterozygous state in genes recommended only for biallelic variant reporting and were not returned. The frequency of returnable P/LP variants did not significantly differ by race. CONCLUSION: Using the ACMG SF v3.0, the returnable P/LP variant frequency increased in the ClinSeq cohort by 22%, from 3.4% (n = 50, ACMG SF v2.0) to 4.1% (n = 61, ACMG SF v3.0).


Assuntos
Variação Genética , Genômica , Exoma/genética , Variação Genética/genética , Humanos , Mutação , Sequenciamento do Exoma
4.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...